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Functional magnetic resonance imaging (fMRI) was used to measure
activity in human somatosensory cortex and to test for cross-digit sup-
pression. Subjects received stimulation (vibration of varying amplitudes)
to the right thumb (target) with or without concurrent stimulation of the
right middle finger (mask). Subjects were less sensitive to target stimu-
lation (psychophysical detection thresholds were higher) when target and
mask digits were stimulated concurrently compared with when the target
was stimulated in isolation. fMRI voxels in a region of the left postcentral
gyrus each responded when either digit was stimulated. A regression
model (called a forward model) was used to separate the fMRI measure-
ments from these voxels into two hypothetical channels, each of which
responded selectively to only one of the two digits. For the channel tuned
to the target digit, responses in the left postcentral gyrus increased with
target stimulus amplitude but were suppressed by concurrent stimulation
to the mask digit, evident as a shift in the gain of the response functions.
For the channel tuned to the mask digit, a constant baseline response was
evoked for all target amplitudes when the mask was absent and
responses decreased with increasing target amplitude when the
mask was concurrently presented. A computational model based on
divisive normalization provided a good fit to the measurements for
both mask-absent and target � mask stimulation. We conclude that
the normalization model can explain cross-digit suppression in
human somatosensory cortex, supporting the hypothesis that nor-
malization is a canonical neural computation.

fMRI; somatosensory cortex; suppression; normalization; forward
model

SOMATOSENSORY STIMULATIONS delivered concurrently at two
nearby locations on the skin may interfere with one another to
reduce their detectability (masking), a phenomenon that has
been attributed to mutual suppression between neurons that
respond selectively to each of the two stimuli (Gardner and
Spencer 1972a, 1972b; Tommerdahl et al. 2010). Such sup-
pressive effects have been reported in human somatosensory
cortex with EEG (Gandevia et al. 1983), MEG (Hoechstetter et
al. 2001), and functional magnetic resonance imaging (fMRI)
(Krause et al. 2001; Kurth et al. 2000; Ruben et al. 2006). For
example, concurrent stimulation of the fingertips evokes less
activity than sequential stimulation of the same fingertips

(Gandevia et al. 1983; Hoechstetter et al. 2001). Analogous
suppressive effects have been reported in the visual system,
and they have been attributed to a particular computational
theory of neural processing called the normalization model.
Normalization in the visual system provides a variety of useful
functions including maximizing sensitivity for some stimulus
features while maintaining invariance with respect to other
stimulus dimensions and improving the efficiency of sensory
coding (Carandini et al. 1997). The same principles of maxi-
mizing sensitivity, maintaining invariance, and optimizing ef-
ficiency apply also to somatosensory coding in somatosensory
systems. Do neural circuits in the primary somatosensory
cortex (S1) perform the same computation, i.e., normalization,
that is performed by the visual system and other sensory
systems?

The normalization model was initially proposed to explain
stimulus-evoked responses of individual neurons in primary
visual cortex (V1) (Carandini et al. 1997; Carandini and
Heeger 1994; Heeger 1992). The model’s defining character-
istic is that the response of each neuron is divided by a factor
that includes the summed activity of a pool of neurons (Caran-
dini and Heeger 2012). In V1, this normalization pool includes
neurons selective for a range of different visual stimulus
features (e.g., orientation, spatial frequency, motion direction,
binocular disparity, eye dominance) and spatial positions (i.e.,
receptive field locations). The model thereby predicts and
explains well-documented physiological phenomena, such as
cross-orientation suppression, in which a V1 neuron’s response
to its preferred orientation is suppressed by simultaneous
presentation of the orthogonal orientation (which does not
evoke any response when presented alone), and surround
suppression, in which a neuron’s response to a preferred
stimulus within its receptive field is suppressed by simultane-
ous stimulation at nearby positions outside the receptive field
(Carandini et al. 1997; Cavanaugh et al. 2002a, 2002b; DeAn-
gelis et al. 1992; Geisler and Albrecht 1992; Morrone et al.
1982; Morrone and Burr 1986; Sceniak et al. 1999, 2001;
Smith et al. 2006). Similarly, the normalization model accu-
rately fits the pooled activity of large populations of neurons in
cat V1 (Busse et al. 2009), visual-evoked potentials in human
subjects (Busse et al. 2009), and fMRI measurements of
activity in human V1 (Brouwer and Heeger 2011; Moradi and
Heeger 2009; Zenger-Landolt and Heeger 2003). The model
likewise fits psychophysical measurements of pattern masking
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and surround masking (Foley 1994; Xing and Heeger 2000,
2001), which are the hypothesized perceptual analogs of cross-
orientation suppression and surround suppression. The model
has since been shown to explain stimulus-evoked responses in
visual cortical area MT (Simoncelli and Heeger 1998), infero-
temporal cortex (Zoccolan et al. 2005), and primary auditory
cortex (e.g., Rabinowitz et al. 2011), multisensory integration
in MST (Ohshiro et al. 2011), the representation of value in
LIP (Louie and Glimcher 2010), responses of neurons in the
superior colliculus and their role in the control of saccadic eye
movements (Vokoun et al. 2014), olfactory processing in
Drosophila antennal lobe (Olsen et al. 2010), and modulatory
effects of attention on visual cortical neurons (Herrmann et al.
2010; Itthipuripat et al. 2014; Reynolds and Heeger 2009;
Sundberg et al. 2009). It has been hypothesized, consequently,
that the brain relies on a set of canonical neural computations,
repeating them across brain regions and modalities to apply
similar operations of the same form, hierarchically, giving rise
to greater selectivity and invariance at each stage of visual
processing (Heeger et al. 1996; Riesenhuber and Poggio 1999,
2002; Simoncelli and Heeger 1998), and that divisive normal-
ization may be one of these canonical neural computations
(Carandini and Heeger 2012).

In both humans and nonhuman primates, S1, located on the
postcentral gyrus, contains a somatotopic map of the body.
This map can be divided further, based on differences in
physiology and cytoarchitecture, into four distinct subregions
(3a, 3b, 1, and 2), each containing a complete representation of
the hand and digits (Geyer et al. 1997, 1999, 2000; Sanchez-
Panchuelo et al. 2012). In nonhuman primates, these subre-
gions differ in the average size of the receptive fields: area 3b
receptive fields are restricted to a single digit (Iwamura et al.
1983a; Pons et al. 1987), but receptive field sizes are larger in
areas 1 and 2, extending over multiple digits (Hyvarinen and
Poranen 1978; Iwamura et al. 1983a, 1983b). There is an
analogous complex pattern of overlapping cortical representa-
tions for different fingertips within human S1 (Besle et al.
2013). With high-resolution fMRI (7 T, 1.25 � 1.25 � 1.3-mm
voxels), distinct representations of the fingertips are evident
only in the anterior part of S1 (mainly in the posterior bank of
the central sulcus, although for some subjects it extends onto
the postcentral gyrus), whereas voxels in the posterior part of
S1 (on the postcentral gyrus) generally respond to more than
two fingertips (Besle et al. 2013, 2014). There is some overlap
between the fMRI responses to adjacent fingertips even in the
anterior part of S1, with many voxels responding to two
adjacent fingertips, but there is more overlap in the posterior
part of S1, with many voxels responding to five fingertips
(Besle et al. 2014). The overlap is not entirely due to the spatial
spread of the hemodynamic responses (Besle et al. 2014),
consistent with the observations (cited above) that receptive
fields extend over multiple digits in nonhuman primates. This
overlap in the cortical representation of different fingertips
makes it difficult to quantify the suppression induced by
stimulating one digit on the responses evoked by concurrent
stimulation of a second digit.

A regression model (called a forward model) can be used to
separate the responses of distinct subpopulations of neurons
that are intermingled at a fine spatial scale, e.g., subpopulations
of neurons in V1 with different orientation preferences (Brou-
wer and Heeger 2011; Kay et al. 2008). With a forward model,

voxel responses are transformed into a small number of ideal-
ized channel responses, where the channels are selective for
stimulus features. We have used this approach successfully to
characterize the representation of color (Brouwer and Heeger
2009, 2013) and, more relevant to the present study, cross-
orientation suppression (Brouwer and Heeger 2011). In cross-
orientation suppression, the response to a grating at the neuron’s
preferred orientation (target) is suppressed by the simultaneous
presentation of an orthogonal (mask) grating (Carandini et al.
1997; DeAngelis et al. 1992; Geisler and Albrecht 1992;
Morrone et al. 1982). We previously reported using fMRI to
measure cortical activity as a function of contrast for (vertically
oriented) target gratings and for “plaids” in which (vertically
oriented) target gratings were superimposed with a (horizon-
tally oriented) mask grating, and we used a forward model to
transform the voxel responses into a small set of orientation-
selective channels (Brouwer and Heeger 2011). The normal-
ization model provided a good fit to the channel responses. For
the channel tuned to the target orientation (vertical), responses
increased with target contrast but were suppressed when the
horizontal mask was added, evident as a shift in the contrast
gain of this channel’s responses. For the channel tuned to the
mask orientation (horizontal), a constant baseline response was
evoked for all target contrasts when the mask was absent and
responses decreased with target contrast when the mask was
present.

In the present study, we used a very similar methodology to
characterize cross-digit suppression in human somatosensory
cortex. We found that the activity produced by stimulating one
digit (thumb) was suppressed by a concurrent stimulation of a
different digit (middle finger). Furthermore, the suppression
was evident as a shift in gain, as explained by the normaliza-
tion model. This result supports the hypothesis that normaliza-
tion is a canonical neural computation that is implemented in
many different neural systems.

MATERIALS AND METHODS

Subjects and scanning sessions. Six healthy subjects between the
ages of 21 and 35 yr participated in the fMRI experiment, and a
separate group of five subjects participated in the psychophysics
experiment. Subjects provided written informed consent. Experimen-
tal procedures were in compliance with the safety guidelines for MRI
research and were approved by the University Committee on Activ-
ities Involving Human Subjects at New York University. Subjects had
normal or corrected-to-normal vision and no history of somatosensory
dysfunction, peripheral neuropathy, or finger calluses. Each fMRI
subject participated in two experimental sessions of the main exper-
iment, consisting of 10 runs each. Subjects also participated in a
session in which three high-resolution anatomical volumes were
acquired.

Tactile and visual stimulus presentation. Tactile stimuli were
delivered to the distal pad of the subjects’ right thumb and middle
finger with two independent, custom-built, MR-compatible piezoelec-
tric devices (PTS-C2 piezo tactile stimulator; Dancer Design). Each
stimulator delivered a somatosensory stimulus at a frequency of 25 Hz
with �1-mm displacement applied over an �1-mm2 area of contact.
Visual stimuli were presented with an LCD projector (Eiki LC-
XG100; Eiki, Rancho Santa Margarita, CA) with a pixel resolution of
1,024 � 768 and a 60-Hz refresh rate. Subjects viewed the image
from the LCD projector on a rear projection screen placed inside the
bore of the magnet at a distance of 57 cm, yielding a field of view of
32° � 20°.
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MRI acquisition. MRI data were acquired with a 3-T, head-only
MRI scanner (Allegra; Siemens, Erlangen, Germany) using a head
coil (NM-011; NOVA Medical, Wakefield, MA) for transmitting and
an eight-channel phased array surface coil (NMSC-071; NOVA Med-
ical) for receiving. Functional scans were acquired with gradient
recalled echo-planar imaging to measure blood oxygen level-depen-
dent (BOLD) changes in image intensity (Ogawa et al. 1990). Func-
tional imaging was conducted with 24 slices oriented parallel to the
AC/PC plane and positioned over the pre- and postcentral gyri,
containing the primary motor cortex and S1, respectively (repetition
time: 1.5 s; echo time: 30 ms; flip angle: 75°; voxel size: 2 � 2 � 2.5
mm; 64 � 64 grid size). A T1-weighted magnetization-prepared rapid
gradient echo (MPRAGE, 1 � 1 � 2.5 mm) anatomical volume was
acquired in each scanning session with the same slice prescriptions as
the functional images. This anatomical volume was aligned with a
robust image registration algorithm (Nestares and Heeger 2000) to a
high-resolution anatomical volume. The high-resolution anatomical
volume, acquired in a separate session, was the average of several
MPRAGE scans (1 � 1 � 1 mm) that were aligned and averaged and
was used not only for registration across scanning sessions but also for
gray matter segmentation and cortical flattening (see below).

Stimuli and experimental protocol. Tactile stimuli consisted of
1.5-s bursts of sinusoidally modulated displacement of the piezoelec-
tric element at 25 Hz, which was experienced as “flutter.” A target
stimulus was presented to the thumb at five different amplitude levels
(1.56%, 3.125%, 6.25%, 12.5%, and 50% of maximum vibration
level) either in isolation (“mask absent”) or concurrent with a mask
stimulus presented to the middle finger at 50% of maximum vibration
level (“target � mask”). In addition, we included separate “mask-
only” and “target-only” trials (at 50% of maximum vibration level) for
estimating the weights on the forward model (see below). All 12
possible stimuli (5 amplitude levels with mask absent, 5 amplitude
conditions with target � mask, target-only, and mask-only) were
presented five times in each run, along with five blank trials. This
created a total of 65 trials per run (including blank trials), with 1 run
lasting 5 min and 6 s. Stimuli were presented in randomly shuffled
order, with interstimulus intervals (ISIs) of 3, 4.5, or 6 s (also in
randomly shuffled order).

Subjects performed an asynchronous visual change-detection task
continuously throughout each run, to maintain a consistent behavioral
state and to divert attention away from the tactile stimuli (Fig. 1). In
two intervals (500 ms each, ISI 500 ms), subjects were shown four
small, randomly colored disks (size: 0.5° of visual angle, distance
from fixation: 1° of visual angle). One of the disks changed color
between intervals, and the subject’s task was to indicate which one by
means of a button press with one of the fingers of the left hand.
Diverting attention away from the tactile target stimuli yielded a
measure of the stimulus-evoked response that was not confounded
with attentional modulation. Without any attentional control, we (and
others) have reported large and highly variable (trial to trial) sensory-
evoked responses in cortex (e.g., Ress et al. 2000).

Segmentation, cortical flattening, and delineation of regions of
interest. For each subject, the high-resolution anatomical volume was
segmented and computationally (Figs. 2 and 3) flattened with the
public domain software FreeSurfer (Dale et al. 1999) and then
automatically parcellated into human cortical gyri and sulci with an
atlas of standardized nomenclature and criteria (Destrieux et al. 2010).
From these labels, we created four regions of interest (ROIs): the pre-
and postcentral gyrus of each hemisphere (Fig. 2). Most important of
these four ROIs was the left postcentral gyrus, containing S1 con-
tralateral to the stimulated hand. The remaining three ROIs served as
controls.

Response time courses, response amplitudes, and response
reliability. fMRI data were preprocessed with standard procedures.
The first four images of each run were discarded to allow the
longitudinal magnetization to reach steady state. We compensated for
head movements within and across runs with a robust motion estima-

tion algorithm (Nestares and Heeger 2000), divided the time series of
each voxel by its mean image intensity to convert to percent signal
change and compensate for distance from the RF coil, and linearly
detrended and high-pass filtered the resulting time series with a cutoff
frequency of 0.01 Hz to remove low-frequency drift. The hemody-
namic impulse response function (HIRF) of each ROI was estimated
with deconvolution (Dale 1999), with a procedure described in detail
previously (Brouwer and Heeger 2009, 2011).

The response amplitudes for each trial type were measured sepa-
rately for each voxel in each ROI and separately for each run, with
linear regression. A regression matrix was constructed for each ROI

Right Hand
Vibrotactile stimulation

Left Hand
Response to visual stimuli

Target

Mask

1

2
3

4

1º
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1 2

3 4
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Time

Fig. 1. Experiment design. A: vibrotactile stimulation was delivered to the right
thumb (target stimulus) and right middle finger (mask stimulus). B: the visual
task was a 2-interval change detection task. In the first interval (500 ms), 4
differently colored disks were presented around fixation. This was followed by
a 500-ms interstimulus interval (ISI) and a second interval (500 ms) in which
1 of the 4 disks changed to a new random color. The subject was instructed to
indicate which disk had changed in the subsequent response interval (1,000
ms), using the left-hand fingers to press 1 of 4 buttons.
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by convolving the estimated HIRF and its numerical derivative with
binary time courses corresponding to the onsets of each of the 12 trial
types (with 1s at each stimulus onset and 0s elsewhere). This resulted
in a regression matrix with 24 columns: 12 columns for the HIRF
convolved with each of the 12 stimulus onsets and 12 columns for the
HIRF-derivative convolved with each of the stimulus onsets. Each
column of the regression matrix was linearly detrended and high-pass
filtered, identically to the preprocessing of the fMRI measurements.
Response amplitudes were estimated by multiplying the pseudoin-
verse of this regression matrix with the measured (and preprocessed)
fMRI response time courses. The values (beta weights) obtained for
the derivative regressors were discarded after response amplitudes
were estimated (Brouwer and Heeger 2009). We included the HIRF
derivative in the regression, even though the associated beta weights
were discarded, because the HIRF of an individual voxel may have
differed from the estimated HIRF. The HIRF and its derivative are not
mutually orthogonal, so including the derivative in the regression
accounted for some of the variance in the measured response time
courses and affected the response amplitudes associated with the
HIRF. The variance of the estimated response amplitudes across runs
was indeed smaller with the derivative included than without it. We

thus obtained, for each voxel and each run, one response amplitude
measurement for each of the different trial types.

The activation of each voxel was quantified as the fraction of the
variance in the original time course that was accounted for by the
regression model, i.e., r2 (Fig. 3A). A voxel with no repeatable response
to the stimuli would have had r2 � 0. A voxel whose time course
consisted of identical responses to each stimulus presentation perfectly fit
by the regression model would have had r2 � 1.

Voxel selection. No statistical test was used to identify statistically
active voxels, because our goal was not to localize somatosensory
cortex but rather to measure and characterize the physiology in that
cortical area. Instead, we simply selected voxels from each of the four
ROIs (pre- and postcentral gyrus of each hemisphere) that showed the
most reliable stimulus-evoked responses (Fig. 3A). Specifically, we
included voxels with activation (r2, variance in the original time
course that was accounted for by the regression model) in the top 75th
percentile, thus selecting 25% of the original voxels for the subse-
quent analysis. This split was arbitrary and was used solely to remove
noisy voxels. A range of other thresholds (25th–75th percentiles)
yielded similar results and supported the same conclusions.

Baseline removal. A baseline was removed from each voxel’s
response, separately for each run, in each scanning session. Specifi-
cally, let m be the number of voxels and c the number of conditions,
resulting in a matrix of estimated response amplitudes B of size m �
c, for each run. For each B, we computed the mean responses across
all stimulus conditions, yielding a vector v of mean response ampli-
tudes of length m (1 per voxel). This vector was normalized to a unit
vector and removed by linear projection: B* � B � (BTv)v. The
baseline removal was done as an additional preprocessing step before
transforming the voxel responses to the channel responses (described
next). This analysis step was not performed when computing the mean
responses across voxels.

Forward model. Following our previous work on color vision and
cross-orientation suppression (Brouwer and Heeger 2009, 2011,
2013), we used a forward model to separate the voxel responses into
two channel responses, selective for the thumb and middle finger. At
the scale of individual neurons, the representations of the thumb and
middle finger occupy different, but partially overlapping, subregions
of the somatosensory cortex. Because of the overlap coupled with the
limited resolution of our fMRI measurements (10 mm3), many voxels
contained neurons responsive to both digits, in varying proportions.
We defined two idealized channels, one responsive to only thumb
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Fig. 2. Regions of interest (ROIs). Automated parcellation of human cortical
gyri and sulci provided 4 ROIs: left and right hemisphere pre- and postcentral
gyrus.

A B

thumbmiddle finger
Activation (r2)

0.0 0.20.1
Weight

precentral sulcus postcentral sulcus

intraparietal sulcus

central sulcus

lateral sulcus

Fig. 3. Activation and weight maps. A: activation map: stim-
ulus-evoked activation shown on a flattened representation
(flat map) of the left hemisphere central sulcus for a typical
example subject. Dark gray, sulci; light gray, gyri; colors,
activation of each voxel in the postcentral gyrus ROI, quan-
tified as the fraction of the variance in the original time course
that was accounted for by the regression model (r2). Dashed
line indicates border between the post- and precentral gyri. B:
weight map. Colors, weights assigned by the forward model
to each voxel, rescaled to range from 0 to 1, for voxels with
response reliability (from A) exceeding r2 � 0.1.
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stimulation and the other responsive to only middle finger stimulation.
The responses of each voxel were assumed to be a weighted sum of
the responses of these two channels. In the first stage of the analysis,
we used the response amplitudes from the target-only and mask-only
conditions to estimate the weights on the two hypothetical channels,
separately for each voxel. With these weights in hand, the second
stage of analysis computed the channel responses evoked by the
mask-absent and target � mask trials, i.e., those in which we varied
the amplitude of the target and the presence of the mask. Let m be the
number of voxels and n the number of repeated measurements. The
matrix of response amplitudes for the target-only and mask-only
conditions (Bw, m � n) was related to the matrix of hypothetical
channel responses (Cw, 2 � n) by a weight matrix (W, m � 2):

Bw � WCw (1)

The matrix of hypothetical channel responses Cw was a binary matrix
with 2 rows (1 for each channel) and n columns (repeated measures).
For the target-only stimuli, the first row was set to 1 and the second
column was set to 0. For the mask-only stimuli, this was reversed. The
least-squares estimate of the weights was computed with linear
regression:

W
^

� BwCw
T�CwCw

T��1 (2)

The channel responses to mask-absent and target � mask stimuli (Bc)
were then computed, again with linear regression:

C
^

c � (W
^

TW
^

)�1W
^

TBc (3)

For these matrices to be invertible, the number of voxels must be
greater than the number of channels (2), and there must be an uneven
weighting of these two channels in at least a subset of the voxels so
that the voxels exhibit sufficiently different responses to stimulation
of the two digits. These requirements posed no difficulty since the
average size of our ROIs across subjects was �100 voxels, and there
were stable biases in the responses of voxels to different digits, as
expected from the known organization of somatosensory cortex. The
channel responses to each of the mask-absent and target � mask
stimuli were computed separately for each subject, averaged across
runs. Finally, we computed the grand mean and SE of the channel
responses across subjects, separately for each stimulus condition.

Normalization model fit. The normalization model (Carandini and
Heeger 2012) was used to fit the channel responses. The response of
the target channel as a function of target and mask amplitude was
modeled as

ri � rmax� at
n

��at
2 � am

2 �n
� �n� � b (4a)

Similarly, the response of the mask channel as a function of target and
mask amplitude was modeled as

rm � rmax� am
n

��at
2 � am

2 �n
� �n� � b (4b)

where in both equations at is the target amplitude and am is the mask
amplitude. The model had four parameters: �, n, rmax, and b, deter-
mining the gain, slope, saturation and baseline of the response func-
tions, respectively. We fitted the channel responses simultaneously,
for all target amplitudes and for both mask-absent and target � mask
stimulation. There were a total of 20 data points (2 channels, 5 target
amplitudes, 2 mask amplitudes) to constrain the four parameters.

Gain change. To test for and quantify a shift in gain for target �
mask compared with mask absent, we fitted a simplified version of the
normalization model to the responses in the target channel:

rt � rmax� an

an � �n� � b (5)

For these fits, we fixed all parameters to the values obtained in the
simultaneous fit described above, with the exception of �, the param-
eter determining the gain of the response function. We fitted the response
functions separately for the target � mask and mask-absent conditions,
thereby obtaining a value of � for each condition. If the presence of the
mask led to a decrease in gain, the � parameter for the target � mask
condition would have been larger than the � for the mask-absent condi-
tion (i.e., a stronger target amplitude would have been needed to achieve
the same response).

The statistical significance of any difference in � values was
determined by means of bootstrapping. We randomly resampled the
data, with replacement, and then fitted the model (Eq. 5) to the
resampled data set. Repeating this procedure a large number of times
provided distributions of � parameter values that were statistically
compared between conditions. Specifically, we computed the ratios
between each pair of bootstrapped � parameter values corresponding
to the target � mask and mask-absent conditions. This generated a
new distribution of � ratios for which we determined the median and
5th and 95th percentiles. If the � values were not statistically differ-
ent, the distribution of their ratios would have been centered on 1,
with the 5th percentile being smaller and the 95th percentile being
larger than 1. If the 5th percentile was larger than 1, we concluded that
there was a statistically significant change in gain (a 1-tailed test given
the prior hypothesis that the mask should decrease the gain of
responses to the target).

Mean responses. The normalization model was also fit to the mean
responses, averaged across voxels in each ROI, rather than the
channel responses. The goal of this analysis was to determine to what
extent the mean responses reflected the underlying cross-digit sup-
pression observed in the channel responses. The mean responses were
fit with two models. The normalization model predicted cross-digit
suppression, summing the responses of the target and mask channels
(i.e., summing Eqs. 4a and 4b):

r � rmax� at
n � am

n

��at
2 � am

2 �n
� �n� � b (6)

The alternative model did not have cross-digit suppression (only the
target amplitude appears in the denominator of the first term and only
the mask amplitude appears in the second term):

r � rmax� at
n

at
n � �n

�
am

n

am
n � �n� � b (7)

These equations specifically modeled the average responses to the
concurrent vibrotactile stimuli, rather than the responses of separate
channels.

Statistical significance of the model fits was determined with
cross-validation. We divided the data in half. Both models were fitted
to the first half of the data. Using the resulting best-fit parameter
values, we predicted the responses in the remaining half of the data
and computed the variance explained by the predicted responses (r2).
Repeating this procedure a large number of times with different
(random) subdivisions of the data generated distributions of r2 values,
one distribution for each model (with and without cross-digit suppres-
sion). Taking the ratio between these two distributions (r2 model with
cross-digit suppression:r2 model without cross-digit suppression) gen-
erated a new distribution for which we determined the median and 5th
and 95th percentiles. If the r2 values were not statistically different,
the distribution of their ratios would have been centered on 1, with the
5th percentile being smaller and the 95th percentile being larger than
1. If we found that the 5th percentile was larger than 1, we concluded
that the model with cross-digit suppression provided a statistically
better fit to the data than the model without cross-digit suppression. If,
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on the other hand, the distribution of ratios yielded a 95th percentile
smaller than 1, we concluded that the model without cross-digit
suppression provided a statistically better fit to the data than the model
with cross-digit suppression.

Psychophysics. We measured psychophysical cross-digit masking
in a separate experiment (outside the scanner) using the same vibrot-
actile stimulator. In a two-interval forced-choice task (2IFC), subjects
were presented with two stimuli (each for 375 ms) in which the target
(thumb) was stimulated during one of the two intervals. Subjects
pressed one of two buttons to indicate which interval contained target
stimulation. Target (thumb) amplitude was varied across trials be-
tween 1.56% and 50% maximum amplitude (logarithmically spaced)
in randomly shuffled order. Mask (middle finger) amplitude was either
0 (without mask) or 50% maximum amplitude in randomly shuffled
order. Mask amplitude was identical on both intervals of each trial.
Psychometric functions (% correct vs. target amplitude) were fit
(maximum likelihood) with Weibull functions. The strength of cross-
digit masking was measured as the change in target detection thresh-
olds (75% correct) with and without the mask. Statistical significance
of the threshold difference between the two conditions was deter-
mined by a randomization test.

RESULTS

Psychophysical evidence of cross-digit suppression. Sub-
jects were less sensitive to somatosensory stimulation on the
thumb when the thumb and middle finger were stimulated con-
currently compared with when only the thumb was stimulated
(Fig. 4). Target detection thresholds (75% correct responses) were
higher when target and mask digits were stimulated concurrently
compared with when the target was stimulated in isolation (Fig. 4;
P � 0.05).

Activation and weight maps. Stimulation of the right thumb
(target) and middle finger (mask) produced an expected pattern
of activity in the left postcentral gyrus (Fig. 3). Clusters of
active voxels were found at the known location of the somato-
sensory representation of these digits (Fig. 3A). Replicating
previous reports (Besle et al. 2013, 2014; Francis et al. 2000;
Nelson and Chen 2008; Sanchez-Panchuelo et al. 2010;

Schweizer et al. 2008; Stringer et al. 2011), we observed
considerable overlap between the responses to the target and
mask. Despite the overlap, there were two clusters of activity,
one with a bias for the middle finger and the other with a bias
for the thumb (Fig. 3B). The fMRI responses were fit with a
model in which it was assumed that each voxel’s responses
were a weighted sum of the responses of two hypothetical
channels, selective for the thumb and middle finger. These
weights were estimated, separately for each voxel, based on the
response amplitudes from the target-only and mask-only con-
ditions. The weights were then rescaled to range from 0 to 1.
Values close to 0 indicated that the responses in a voxel were
dominated by stimulation to the middle finger (Fig. 3B), while
values close to 1 indicated that the responses were dominated
by stimulation to the thumb (Fig. 3B). The region of cortex
between these two clusters responded to both thumb and
middle finger stimulation, and part of this region presumably
would have responded preferentially to index finger
stimulation.

Cross-digit suppression in somatosensory cortex. To mea-
sure cross-digit suppression, a target stimulus was presented to
the thumb at five different amplitude levels either in isolation
(mask absent) or concurrent with a mask stimulus presented to
the middle finger (target � mask). In addition, we included the
separate mask-only and target-only trials (as mentioned above)
for estimating the channel weights. Because of overlap be-
tween the representations of the target and mask digits, we
could not define distinct subregions that responded to only one
but not the other digit. Instead, we used a forward model to
separate the cortical activity evoked by the two digits by
transforming the fMRI measurements from the voxel responses
into channel responses. Again, the responses of each voxel
were assumed to be a weighted sum of the responses of two
channels, selective for thumb and middle finger. In the first
stage of the analysis, we used the response amplitudes from the
target-only and mask-only conditions to estimate the weights
on the two hypothetical channels, separately for each voxel.
With these weights in hand, the second stage of analysis
computed the channel responses evoked by the mask-absent
and target � mask trials, i.e., those in which we varied the
amplitude of the target and the presence of the mask.

fMRI responses in the left postcentral gyrus ROI exhibited
cross-digit suppression (Fig. 5, A and B). For the channel tuned
to the target (thumb), responses increased with target stimulus
amplitude when the mask was absent (Fig. 5A). This response
function was shifted rightward on the log-amplitude axis in the
presence of the mask (Fig. 5A). This rightward shift on the log
axis is the hallmark of divisive normalization. The channel
preferring the mask digit exhibited a constant “baseline” re-
sponse to target stimulation regardless of target amplitude (Fig.
5B). The mask channel responded strongly to the mask stim-
ulus, and its responses to the mask decreased with increasing
amplitude of the concurrently presented target (Fig. 5B).

As a control, we also analyzed data from each of the other
three ROIs. As expected, the target- and mask-specific chan-
nels from right hemisphere postcentral gyrus (ipsilateral to the
stimulation) exhibited weak, if any, stimulus-evoked responses
and little, if any, evidence of suppression (Fig. 5, C and D).
Similar results were observed for the right precentral gyrus
(data not shown). The left precentral gyrus did show some
stimulus-evoked responses and evidence of suppression, albeit
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Fig. 4. Psychophysics. Subjects reported the stimulus interval containing
vibrotactile stimulation to the thumb (target) as a function of target amplitude,
with and without concurrent stimulation of the middle finger (mask). Filled
symbols, target detection without mask; open symbols, target detection with
mask. Error bars, SE across 5 subjects. Curves are maximum likelihood fits
using Weibull functions.
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weaker than those observed in the left postcentral gyrus. This
might be explained by partial voluming of the fMRI measure-
ments: voxels assigned to the precentral gyrus ROI might have
extended into postcentral gyrus, because of folding of the
cortical surface. Another possibility is that responses in the
precentral gyrus reflected activity of genuine sensory neurons,
which are in fact scattered throughout motor cortex (Penfield
and Erickson 1941). A third explanation is that motor neurons
in precentral gyrus might have received input from their
counterparts (i.e., representing the same body part) in somato-
sensory cortex (postcentral gyrus).

Normalization model fit. We fitted the responses from both
channels and both conditions (target � mask, mask absent) with
the normalization model (Eqs. 4a and 4b). The normalization
model had four free parameters, �, n, rmax, and b, that determined
the amplitude gain, slope, saturation, and baseline of the response
functions, respectively. Cross-digit suppression is predicted by the
normalization model because both target amplitude and mask
amplitude appear in the denominators of the equations (Eqs. 4a
and 4b). Increasing the mask amplitude causes the response of the
target channel to decrease, and vice versa. The dashed and solid
curves in Fig. 5 represent the best fit. For the left postcentral gyrus,
the normalization model provided a good fit to the channel
responses (model fit r2 � 0.85). The best-fit gain was � � 0.05,
and the best-fit exponent was n � 2.23.

For the right hemisphere postcentral gyrus, the fit of the
normalization model was poor (r2 � 0.18), as well as for the
right hemisphere precentral gyrus (r2 � 0.25). The fit of the
model to the channel responses from left hemisphere pre-
central gyrus was reasonable (r2 � 0.61), although still
worse than left hemisphere postcentral gyrus.

Fitting the channel responses with the normalization
model was considerably better than attempting to fit the
model to voxel responses. Because of overlap between the
representations of the target and mask digits, we could not
define distinct ROIs that responded exclusively to only one
digit. But, as noted above, there were two clusters of
activity, one with a bias for the middle finger and the other
with a bias for the thumb (Fig. 3B). These two voxel clusters
in the left postcentral gyrus were used in an attempt to
quantify the effect of the mask on the target, without using
the forward model. We measured response amplitudes
within each of these two clusters of voxels and fit these
measurements with the normalization model (Eqs. 4a and
4b). This more conventional approach to the analysis re-
sulted in qualitatively similar, but quantitatively inferior,
results (data not shown); the fit to the target and mask ROI
responses (r2 � 0.52) was worse than the fit to the target and
mask channel responses (r2 � 0.85, same as reported
above), using the same model.
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Fig. 5. Cross-digit suppression in human somatosensory cor-
tex. A and B: channel responses from left hemisphere post-
central gyrus. C and D: right hemisphere postcentral gyrus. A
and C: channel selective for thumb (target) stimulation. B and
D: channel selective for middle finger (mask) stimulation.
Filled symbols, mask absent; open symbols, target � mask.
Error bars, SE across 6 subjects. Dashed and solid curves,
normalization model.
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Gain change. The suppression in the target channel during
cross-digit suppression was due to a change in gain (Fig. 5A,
rightward shift on log amplitude axis, i.e., change in �). We
fitted the responses in this channel to each condition (target �
mask, mask absent) separately, using a simplified version of
the normalization model, allowing � to differ between condi-
tions (Eq. 5). For the left postcentral gyrus ROI, the change in the
target channel responses from the mask-absent to the target �
mask condition was associated with a highly significant increase
in the best-fit � parameter value (mask absent � � 0.06; target �
mask � � 0.60; P � 0.001, nonparametric test based on bootstrap
distributions of � parameter values).

For the left precentral gyrus ROI, there was weaker, but still
significant, evidence for a difference in gain between the two
conditions (mask absent � � 0.14; target � mask � � 0.45;
P � 0.01). For the remaining two ROIs, we did not find strong
evidence for a difference in gain between the two conditions,
as expected given that the stimulus-evoked responses were
weak or absent in those ROIs (right precentral gyrus P � 0.05;
right postcentral gyrus P � 0.06).

Mean response amplitudes. The mean voxel responses also
exhibited evidence for normalization, averaged across respon-
sive voxels in each ROI, but not as clearly as in the channel
responses (Fig. 6A). If there were no suppression, then the
mean voxel responses to the target � mask stimuli would have
been simply the sum of the responses to the target stimuli (of
various amplitudes) plus the response to the mask stimulus.
Therefore, the response function for the target � mask condi-
tion would have been shifted upward relative to the no-mask
condition, with the same slope. However, the response func-
tions were found to have different slopes and to converge at
higher amplitudes, as predicted by the normalization model.
We fit the normalization model to the mean voxel responses
(Eq. 6) and compared it (using cross-validation, see MATE-
RIALS AND METHODS) to an alternative model that was similar
in all other respects but did not predict cross-digit suppres-
sion (Eq. 7). The fit with the normalization model was
slightly better than that with the alternative model (normal-
ization model r2 � 0.72; alternative model r2 � 0.69; P �
0.001, cross-validation).

Again, there was no evidence for normalization in the right
hemisphere postcentral gyrus, ipsilateral to the stimulation,
because there was little, if any, stimulus-evoked activity (Fig.
6B). Similar results were observed for the two remaining ROIs:
the left and right precentral gyri (data not shown).

DISCUSSION

Normalization in somatosensory cortex. Using fMRI and
forward modeling, we measured the activity in two hypothet-
ical channels, each tuned to one of the two stimulated digits,
and fit these digit-selective responses with the normalization
model. We found clear evidence of cross-digit suppression.
The normalization model provided a good fit to the response
functions with and without the mask stimulus. The cross-digit
suppression observed in the left postcentral gyrus correlated
with the psychophysical data: concurrent vibrotactile stimula-
tion to the middle finger masked the stimulation to the thumb,
resulting in higher detection thresholds. These results are in
line with earlier EEG (Gandevia et al. 1983), MEG (Hoech-
stetter et al. 2001), and fMRI (Krause et al. 2001; Kurth et al.

2000; Ruben et al. 2006) studies that investigated the suppres-
sive effects of concurrent tactile stimulation. In this study we
used a novel methodology to further characterize the neural
responses reflecting these suppressive effects and fit them with
a computational model: divisive normalization.

Our results show that the normalization model can explain
suppression of somatosensory responses from concurrent stim-
ulation of different digits, adding to the growing body of
evidence that divisive normalization is a canonical neural
computation (Carandini and Heeger 2012). The normalization
model was initially proposed to explain stimulus-evoked re-
sponses of individual neurons in V1 and has since been applied
to explain neural activity in a wide variety of neural systems
(see introduction for references). It has been argued that
normalization provides a variety of useful functions including
maximizing sensitivity for some stimulus features while main-
taining invariance with respect to other stimulus dimensions.
For example, normalization in V1 discards information about
contrast to encode image pattern (e.g., orientation) (Albrecht
and Hamilton 1982; Busse et al. 2009; Heeger 1992), optimiz-
ing discriminability regardless of contrast (Ringach 2010). It
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has also been suggested that normalization in V1 improves the
efficiency of sensory coding (Schwartz and Simoncelli 2001;
Sinz and Bethge 2013; Wainwright et al. 2002). Analogous
principles apply to somatosensory coding in S1.

Negative BOLD. We suggest that the response decrease that
we observed in the presence of the mask stimulus reflected a
suppression of neural responses, but our results might have
been confounded by the hemodynamics. Target and mask
stimulation evoked hemodynamic responses in adjacent and
partially overlapping cortical regions. To satisfy the need for
oxygenated blood in regions representing the mask digit, blood
flow may have been diverted from the region representing the
target digit, thereby reducing the fMRI responses evoked by
the target, but without a concomitant decrease in neural activ-
ity. Indeed, it has been observed that an increase in fMRI
responses in one region of visual or somatosensory cortex can
be accompanied by a sustained decrease in fMRI responses
(called “negative BOLD”) in both neighboring brain regions,
and also in the contralateral hemisphere (Blankenburg et al.
2003b; Devor et al. 2007; Harel et al. 2002; Hlushchuk and
Hari 2006; Kastrup et al. 2008; Logothetis 2002; Raichle et al.
2001; Shmuel et al. 2002, 2006; Shmuel and Leopold 2008;
Smith et al. 2004; Tootell et al. 1998; Wade and Rowland
2010). It has also been suggested that negative BOLD might be
partially due to hemodynamics (Harel et al. 2002; Shmuel et al.
2002; Woolsey et al. 1996). However, the consensus of evi-
dence indicates that negative BOLD reflects a decrease in
neural activity below baseline (Devor et al. 2007; Kastrup et al.
2008; Shmuel et al. 2006; Shmuel and Leopold 2008; Smith et
al. 2004; Tootell et al. 1998; Wade and Rowland 2010).
Nevertheless, we must consider the possibility that a hemody-
namic effect might have contributed to our results in addition
to neural suppression.

To distinguish between neural and hemodynamic effects in
visual cortical areas, we (and others) have used the difference
in the timescale of these effects, with neural suppression being
much faster (Brouwer and Heeger 2011; Kastner et al. 2001;
Zenger-Landolt and Heeger 2003). Specifically, we ran control
experiments in which the mask stimulus appeared with a lag,
after the target disappeared. This lag was long enough to
abolish the psychophysical masking effect of the mask, and
there was no evidence of suppression in the fMRI responses.
These results thereby favored the neural suppression interpre-
tation, with no evidence for a hemodynamic confound. We
considered running the analogous control experiment in the
present study but chose not to do so because 1) there was little
reason to suspect that the hemodynamics in S1 is markedly
different from that in each of several areas of visual cortex; 2)
the negative BOLD findings in S1 are directly analogous to
those in V1; and 3) it has already been reported with EEG and
MEG that concurrent stimulation of the fingertips suppressed
responses compared with sequential stimulation of the same
fingertips (Gandevia et al. 1983; Hoechstetter et al. 2001).

Forward model. We (and others) have previously shown that
the forward model is a useful tool to extract and isolate
responses corresponding to subpopulations of neurons with
different selectivities from an ensemble measure of neural
activity (Anderson et al. 2013, 2014; Brouwer and Heeger
2009, 2011, 2013; Ester et al. 2013; Garcia et al. 2013; Ho et
al. 2012; Kay et al. 2008; Kok et al. 2013; Saproo and Serences
2014; Scolari et al. 2012; Serences and Saproo 2012). The

forward model thereby offers an approach for analyzing the
ensemble activity of large populations of neurons, to test
computational theories of brain function (such as divisive
normalization). The method can be applied not only to fMRI
but also to optical imaging (intrinsic hemodynamic imaging,
voltage-sensitive dye imaging, wide-field calcium imaging),
EEG, MEG, intracortical EEG (ECoG), local field potentials,
and multiunit spiking.

For the present experiment, we did not assume that neurons
selective for the different digits were spatially segregated at the
resolution of our measurements. Representations of the thumb
and middle finger occupy different, but partially overlapping,
subregions of the somatosensory cortex (see introduction for
references). Individual neurons within both subregions may
respond to both digits, in varying proportions. In addition,
because of the limited resolution of our fMRI measurements
(10 mm3), many voxels were likely to contain neurons respon-
sive to both digits. The advantage of the forward model is its
ability to separate responses to stimulation of different digits
from voxels that do not show a complete bias to one digit or the
other. Therefore, if two or more stimuli evoke overlapping
neural representations (i.e., somatosensory stimulation to dif-
ferent digits, visual stimuli differing in orientation, motion
direction, color, object class), the forward model provides a
tool to separate their contributions and to quantify how they
interact when presented concurrently. For comparison to the
forward model, we tried to separate the responses of two
distinct clusters of voxels, one with a bias for the middle finger
and the other with a bias for the thumb. This approach pro-
duced qualitatively similar, but quantitatively inferior, results.
We also analyzed the mean fMRI responses, averaged over all
responsive voxels; the channel responses determined with the
forward model exhibited clear changes in gain with concurrent
mask stimulation that were not (and not expected to be) evident
in the mean voxel responses.

Possible extensions. S1 can be divided into distinct subre-
gions (3a, 3b, 1, and 2), raising the question of whether
normalization in S1 differs across these subregions. Electro-
physiology studies in nonhuman primates have demonstrated
an anterior-to-posterior somatotopic organization correspond-
ing to the proximal-to-distal (base to tip) surface of each finger
(Kaas et al. 1979; Merzenich et al. 1978; Paul et al. 1972). The
representation in each subregion of S1 mirrors the representa-
tion in the adjacent area (i.e., base to tip is posterior to anterior
in area 3b but anterior to posterior in area 1). This layout
results in map reversals of representations at the boundaries
between areas 3a, 3b, 1, and 2 (Darian-Smith 1982). Analogous
subdivisions of human S1 have been reported based on cyto-
architectonic differences in postmortem brains (Geyer et al.
1997, 1999, 2000). Most previous human fMRI studies have
attempted to assign functionally significant clusters of voxels
to cytoarchitectonic areas based on anatomical criteria (Moore
et al. 2000; Nelson and Chen 2008; Overduin and Servos 2008;
Schweizer et al. 2008; Stringer et al. 2011), but considerable
individual differences in somatotopic maps have been reported
in both human and monkey S1 (Besle et al. 2013; Merzenich et
al. 1987; Sanchez-Panchuelo et al. 2012) and there is consid-
erable variability across individuals in the correspondence
between cytoarchitectonic boundaries and the anatomical cri-
teria (Geyer et al. 1999). A few fMRI studies have investigated
within-finger somatotopy in human S1 (Blankenburg et al.
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2003a; Overduin and Servos 2004, 2008; Schweisfurth et al.
2011), but only one study has succeeded in revealing the full
sequence of map reversals in individual subjects, thereby
clearly delineating distinct subregions of S1 (Sanchez-Pan-
chuelo et al. 2012). That study used a 7-T MRI scanner to
achieve sufficiently high spatial resolution (1.25 � 1.25 �
1.3-mm voxels), spatial specificity, and contrast-to-noise ratio
(Gati et al. 1997; Yacoub et al. 2001). Consequently, to
characterize normalization separately in each subregion of
human S1 would require combining our present experiment
and within-finger somatotopy in individual subjects using 7-T
fMRI.

Of particular interest would be to determine whether inter-
digit suppression is evident in the subregions of S1 in which
each neuron responds to only one digit, whether normalization
is stronger in subregions of S1 that have neurons with larger
receptive fields encompassing more than one digit, and
whether normalization is stronger in subregions of S1 that
respond equally to both digits. The forward model approach to
the data analysis can be applied only when there is an uneven
weighting of the two channels in at least a subset of the voxels,
so that the voxels exhibit sufficiently different responses to
stimulation of the two digits (see MATERIALS AND METHODS). For
this reason, some of these questions will require a different
approach.

Normalization has been found to interact with attention in
visual cortex (Herrmann et al. 2010; Itthipuripat et al. 2014;
Reynolds and Heeger 2009; Sundberg et al. 2009), so interdigit
suppression might likewise depend on attention. In this exper-
iment, we deliberately diverted attention away from the tactile
stimuli by having subjects perform a simultaneous visual task.
In this way we were able to measure stimulus-evoked re-
sponses not confounded by attentional modulation, and there-
fore more likely to reflect innate and fundamental perceptual
processes. Cuing subjects to attend to one (or the other) of the
vibrotactile stimuli, analogous to what has been done in V1,
would provide a further test of the normalization model in S1.

The normalization model, which fit our results, may not
apply to more complex tactile stimuli, or more generally to
teleological high-value tasks such as grasping. The tactile
stimuli in this study consisted exclusively of 1.5-s bursts of
sinusoidally modulated 25-Hz vibration or “flutter” at various
intensities (i.e., amplitudes). Normal grasping involves, in fact
depends on, attention, volitional movement, sensorimotor in-
tegration across at least two digits and at least eight joints, and
vision. The present experiment deliberately excluded all of
these variables, to allow us to test the hypothesis that tactile
masking of flutter stimuli can be explained by the normaliza-
tion model. Our results, taken together, imply that somatosen-
sory discrimination (psychophysical thresholds) should be
worse when grasping an object vs. touching one finger to the
surface of the object. This prediction has not been tested. We
can speculate, however, that since normalization appears to be
a canonical computation performed on sensory inputs of mul-
tiple modalities to produce information of teleological value, it
is likely to play a role in the computations underlying the
grasping process. More specifically, as with nearly all voli-
tional behaviors, grasping requires that task-dependent sensory
stimuli be made salient relative to the flood of simultaneous
and multimodal task-independent stimuli. To the extent that
the normalization computations can account for masking, it

is at least conceivable that the same process underlies
task-dependent stimulus saliency. Whether the normaliza-
tion model in fact generalizes to neuronal responses to other
types of tactile stimuli, or to complex tasks, will require
additional experiments.
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