• Home
  • 1 to 5
    • 1 - Introduction
    • 2 - Definitions
    • 3 - A Brief History of AI
    • 4 - AI and Philosophy
    • 5 - Books Worth Reading
  • 6 to 9
    • 6 - Data Types
    • 7 - Introduction to ML Algorithms
    • 8 - Algorithmic Objectives
    • 9 - A Partial Taxonomy
  • 10 to 13
    • 10 - Difference Perspectives Types
    • 11 - Geometry of Machine Learning
    • 12 - Transformations
    • 13 - Statistics of Machine Learnning
  • 14 to 19
    • 14 - Regression
    • 15 - Classification
    • 16 - Decision Tree
    • 17 - Clustering
    • 18 - Dimensionality Reduction
    • 19 - Manifold Learning and Basis Functions/a>
  • 20 to 23
    • 20 - Graphs and Networks
    • 21 - Natural Language Processing
    • 22 - Causal Inference
    • 23 - Timeseries Analysis
  • 24 to 31
    • 24 - Introduction to Artificial Neural Networks
    • 25 - Building your first ANN
    • 26 - Multilayer Perceptrons
    • 27 - Deep Belief Neural Networks
    • 28 - Introduction to Biological Vision
    • 29 - Convolutional Deep Belief Networks
    • 30 - Visalizing cDBNNs
  • 31 to 37
    • 31 - Generative AI
    • 32 - Reinformcent Learning
    • 33 - Agent-Based Modeling
    • 34 - Genetic and Evolutionary Algorithms
    • 35 - Quantum Computing and ML
    • 36 - Ethics and Bias in AI
    • 37 - Epiloque

Quick Links

  • Home
  • Portfolio
  • Publications
  • Ideas
  • Complexity